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Kink-breather solution in the weakly discrete Frenkel-Kontorova model

S. V. Dmitriev} T. Miyauchi, K. Abe, and T. Shigenari
Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan
(Received 9 November 1999

The discrete Frenkel-Kontorova model, having the sine-Gordon equation as the continuous analog, was
investigated numerically at a small degree of discreteness. Interaction between a kink and a breather in a
discrete system was compared with the exact three-soliton solution to the continuous sine-Gordon equation.
Nontrivial effects of discreteness were found numerically. One is that a kink and a breather in the discrete
system are mutually attractive quasiparticles, so they can be regarded as a three-soliton oscillatory system. The
other is the energy exchange between a kink and a breather when their collision takes place in a vicinity of a
separatrix solution to the continuous sine-Gordon equation. We have estimated numerically the kink-breather
binding energyEg and the maximum possible exchange endegyfor different breather frequencies. The
results suggest that there is a threshold breather frequency for the “spontaneous” breaking up of the three-
soliton oscillatory system into a kink and a breather moving in opposite directions.

PACS numbg(s): 41.20.Jb, 36.26:r, 45.05+x, 63.20.Ry

I. INTRODUCTION

2
H=D =D |2y iz(unﬂ—un)%(l—cosun) :

The sine-GordoiiSG) equation appears in many different n m |2 2h
fields of physic§1-3]. In each field the SG equation is usu- (1)
ally considered with some distinctive perturbation terms . . . .

[4=7). For example, in solid state physics, the discreteness o¥hereEn is the energy ofith particle,u, is the displacement
media at a microscopic level makes it important to study thef the particle from an initial point with coordinate=nh,
discrete form of the SG equation, which is the Frenkel-Pn is the momentum of the particle with a unit massh is
Kontorova mode[8]. the density of energy, ant is the only parameter of the

The discreteness effect on the one- and two-soliton SGYystem, which gives a measure of discreteness because the
solutions has been extensively studied, see the review bgquations of motion obtained from the Hamiltonian EL),
Braun and Kivshaf9], references therein and algb0—14.

For many-soliton solutiongmore than twd a new effect of d?u, 1 ]

perturbation has been found, namely, the energy exchange >~ 5 (Un—1—2Up+ Ui g) +sinu, =0, ()
between soliton$4,15-18. It has been demonstrated that dt h

}gftﬁiesp:][raetgt?fg])_luuons to the SG equation are reSpOHSIbh;] the continuum limit b—0), are reduced to the SG equa-

In the vicinity of a separatrix solution, even a small per-tIon
turbation can have a pronounced effect on the dynamics of
the systen}19,20Q. This is also true for the particular case of
the SG equation perturbed by the discreteness. In this paper,
we show that the effect of discreteness can be noticeabl'%
even for a weak discreteneds<(0.5, for the definition oh
see below, when all other manifestations of discreteness ar
very small.

In Sec. Il, for the sake of convenience, we reproduce th
results of Ref[16] describing the kink-breather SG solution
and a separatrix three-soliton solution. In Sec. Ill, we give
some details of the numerical investigation. In Sec. IV, we
demonstrate numerically the possibility of energy exchang
between a kink and a breather in the weakly discrete S
system. In Sec. V, we discuss the numerical results of the
kink-breather mutual attraction study.

Ui — Uy +Sinu=0. 3

Many-soliton solutions to Eq(3) can be derived by
eans of the Hirota methd@1] or by the Baklund trans-
éormation (see, e.g.[2)).

The three-soliton solution to E¢3), which describes the

&ollision between a kink and a breather, has been reported in
Ref.[16] in the following form

u=v+w. (4)
he functionv is the kink solution

v =4 arctan ex|B, (5)

Il. FRENKEL-KONTOROVA MODEL AND SG EQUATION where B= 5 (x=X,—dil), 0=d,<1 is the velocity of the
kink, 6, "= \/1—dk2, andx defines the position of the kink
We consider the Hamiltonian of the Frenkel-Kontorova gt the timet=0.

model[8] in a dimensionless form The second part of the solution E@) is
w=4 arctaf( 7X)/(wY)], (6)
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X=2w(sinhD —cosC sinhB) w(Xp— X)) =27mMd,(d—dyp), (16
+ 29y Sp(dy—dp)sinC coshB, () wheremis an integer, then at=t, all three kinks collide at
. ) one pointx=x..
Y=27(cosC+sinhD sinhB) Equation(4) subjected to the condition E¢L6) and to the
—26,8,(1—d,d,)coshD coshB, (9  condition
where C= — w [t —dp(X—X,) ]+ 27m with an integerm, (dg—dy)—0 (17)

= —Xp— sd,<1 i i . . . . .
bD 7t7h§ b(xﬁ_fg \/(%20 Ojb <11 'S :Ee fvelocny of ft?he is a separatrix three-soliton solution to the SG equation.
reather, op == by V=@ IS the Irequency ot the Note, that the condition Eq17) generalizes the condition

breather=y1-w®, x, defines the position of the breather y .5 andd,—0 given in Ref[16]. The generalization can

at the timet=0. o , _ be easily done with the help of the Lorentz transformation.
In the continuum limit the velocity of the breathey, its

wavelength\, and periodT are related to each other by the

. . . Ill. MOLECULAR DYNAMICS SIMULATION
following expressions:

Equation (4) predicts the purely elastic interaction be-
tween quasiparticles with no energy exchange between them
or radiation. Here we study the influence of a weak discrete-
ness on the three-soliton solution.

A=4 arctaip/w), E,=16735,. (10) Equations of motion of the Frenkel-Kontorova model, Eq.
(2), were integrated numerically. We rewrite Q) in the
The energy of the kink i€,=86, and the energy of the form
solution(4) is E=Ey+E,.
The masses of the kink and the breather are un=R, (18

|db|:)\/T, )\:27T5b|db|/(l), T:2’775b/a). (9)

The amplitudeA and the energ¥, of the breather are

My=86=Ex, M,=1676,=E,. (1) where R,=(u,_1—2u,+U,.)/h>=sinu, and introduce
the time mesh;=jAt, j=0,1,2 ... with the time stepAt.
By the Stamer method of order sik22] the unknown func-
W, = 5|21: W, =(78,) L. (12) tions u,(t) at the (+1)th time step can be found as

The widths of the kink and the breather can be defined a

Ford,=0, W,=1. The width of the kink gives the notion of
the discreteness parameter which should be viewed in
comparison withw, . 1 1
Collision between a kink and a breather results in the R .—_R..
. K Lo + Rn172 Rn]—s . (19)
phase shifts that, in non-relativistic limit, can be expressed as 3" 12"
follows:

— 2
Upj+1=2Upj— Uy -1+ AL

éRn,j_ 1_2Rn,j71

When calculating the kinetic energy of a particle we used
2 the following approximation for the velocity
Ay=4tanily, Ap=—tanhi!y. (13
K : _2Up+3Up 16Uy 5+ Upj-3
The coordinate and the time of collision of the kink with nJ B6At '
the center of mass of the breather are

(20

For the time step we pukt=10"3. The numerical data
reported in this paper did not vary essentially with further
decreasing oft.

The solution Eq(4) to the continuous equation E),

If d,=d, then, forx,# X, the kink never passes through the after the substitutiox—nh andt— jAt, was used for set-
center of mass of the breather and, fq=x,, the kink  ting the initial conditions for the discrete system E2).
constantly locates at the center of mass of the breather. A kind of absorbing boundary conditions for the chain

Note that the center of kink in the solution Eg) is not  containing 401 particles« 200<n=<200) was used in order
located alx, ; and that the center of the breather is natat  to exclude the influence of the radiation reflected from the
Far from the collision point, before and after the collision, boundaries. For the discreteness parameter wehsdl.2
the center of the kink or breather moves in thet] plane  (weak discretenegs
along the lines

diXp— dpXy i Xp— Xk
T g od, T de—dy’

(14

IV. ENERGY EXCHANGE BETWEEN KINK

A
X=X x5 =d(t-to), (15) AND BREATHER
Let us first study the influence of the weak discreteness

whereA andd are the phase shift and the velocity of kink or (h=0.2) on the kink-breather collision. For this study we put
breather, respectively. the breather frequenay=0.3; the velocities of the kink and
If the breathed,=0, d,=—0.2; the kink position parameter
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FIG. 2. Time evolution of the kink-breather collisions at differ-
ent phases of collision. Arrows in Fig. 1 show the phases of colli-
sion for (8)—(d), respectively. The particles of the chain having
energy E,=0.5 are shown by black dots and the particles with
_ . . . energyE,,<0.5 are not shown. Thus, the black areas show the cores
x,=0 and different magnitudes for the breather position Payt solitons.(a) and(d) Collisions take place far from the separatrix

rameterxb.>0. . . and they are nearly elastith) and(c) All three kinks collide prac-
According to the choice of parameters, before the colli-jca|y at one point and with a small relative velocity or, i.e., in the

sion I_<ink is at rest, the breather moves towgrd the kink froMyicinity of the separatrix(b) and (c) Collisions are inelastic.
the right to the left. The breather moves in an oscillatory

manner and, as it has been demonstrated in R@l, the g5l distances, when the quasiparticles overlap. We carried
inelasticity of the kink-breather collision strongly depends ongt the numerical integration of Eq2) starting from the

the phase at which the breather meets the kink. Variation ofi,e t=T/4, where the period of breath@ris given by Eq.
Xp Mmeans the variation of the phase of collision. The velocity(g)_

of the kink after the CO||iSi0rd: is a suitable measure of In F|g 3, we compare the time-evolution of the discrete

inelasticity of the kink-breather interaction. The veloalty  system Fig. 8) with the prediction of the continuous SG
was determined when the kink was far from the breatheequation Fig. &) for =0.3, x,=1.2. According to Eq.

FIG. 1. Velocity of the kink after the collisiod as the func-
tion of the phase of collisiorx,/\. The inelasticity of collision,
presented byl , drastically increases in the vicinity ef, /A =m.

after the collision.

In Fig. 1, the inelasticity of collisiord is presented as
the function of the phase of collisiof, /A, where\ is given
by Eg. (9). Obviously, the functiord (x,/\) should have

(15), at the beginning of the numerical run the center of kink
locates atx=x,+A,/2=1.2+3.75=4.95 and the center of
breather locates at=x,—A,/2=0—1.96= —1.96.

As Fig. 3b) suggests, the overlapping breather and kink

the period equal to unity. As Fig. 1 suggests, the inelasticityn a continuous SG system interact in such a way that for

of collision drastically increases in the vicinity &f /A =m.
One can easily check that the conditigg/\ =m coincides
with the condition of separatrix solution E¢L6) at x,=0

part of a period of a breather oscillatidn there is an attrac-
tion between quasiparticles and for another part of the period
there is a repulsion. The attraction and the repulsion exactly

andd, =0, considered in our numerical example. The second¢ompensate each other and the mean distance between qua-

condition of the separatrix solution, E€L7), is also nearly
fulfilled becaused,—d,= 0.2, which is sufficiently small.

siparticles does not vary in time. In the perturbed system
[Fig. 3(@], the attraction is not exactly compensated by the

In Figs. 2a)—2(d), we show the kink-breather collisions at
different phases of collision, shown in Fig. 1 by the corre- 300
sponding arrows. The particles of the chain having energy
E,=0.5[see Eq(1)] are shown in Fig. 2 by black dots and
the particles with energ¥,<0.5 are not shown. Thus, the
black areas show the cores of solitons having a high energy.
In Figs. 2a) and Zd) collision takes place far from separa-

200+

trix and it is nearly elastic. In Figs.(B) and 2c) all three =~
kinks collide practically at one point and with a small rela-
tive velocity or, in other words, the conditions of the sepa- 100

ratrix solution, Eq.(16) and Eq.(17), are nearly fulfilled.
Collision in the vicinity of separatrix is inelastic.

. Y. .. S : -,
-8-40 4
X

8§40 48
X

V. ATTRACTION BETWEEN KINK AND BREATHER

For this study we set the parameters as follows: Discrete-
ness parametdr=0.2; breather frequency=0.2, 0.3, and
0.4; velocities of the kink and the breathéy=d,=0; the

FIG. 3. (a) Time evolution of the discrete system afig the
continuous SG equation fes=0.3, x,=1.2. The black areas show
the cores of solitons(a) In the discrete system, the distance be-
breather position parameteg=0, and different magnitudes tween quasiparticles gradually decreases due to their mutual attrac-
for the kink position parametex,. The differencex,—X,  tion. Att=10T~210 (T is the period of the breatheras a result of

and the phase shiftd, and A, define the distance between energy exchange between quasiparticles, the three-soliton solution
the centers of the kink and the breather. We study the case bfeaks up into a kink and a breather moving in opposite directions.
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FIG. 4. Velocity of the kink after breaking up of the three-

soliton solutiond as the function ok, for «=0.3. FIG. 5. Picture of breaking up of the three-soliton solution into

a kink and a breather fd) x,=0.05 and(b) x,=0.32.

repulsion. As a result, the distance between quasiparticle .
gradually decreases and &t 10T~210, the kink collides |%y, we will drop the constant pad /2+ A,/2 and usex as

with the breather. The collision may result in the breaking u fhe measure of the distance between quasiparticles. In Fig.

P D . .
of the three-soliton solution into a breather and a kink mov_5(a), the initial distance between the kink and the breather is

ing in opposite directions, as it takes place in Fi¢a)3 rather small and the collision takes place atT~21, while

The origin of the breaking up of the three-soliton solutionin Fig. S(b), the distance is larger and, &t T, particles are

is the energy exchange between kink and breather in th@tiII rather far from each other and they collide tat 2T

vicinity of a separatrix, as it was demonstrated in Sec. IV. Ifké'z'_ Thel fine stLucture of COI(I]'IS'OnS shown Iln F'?]@Eandl f
the collision is inelastic, the kink can obtain some energy an (b) IS amo_st t € same and, consequ_ent y, t € r_esut 0
separate from the breather. The velocities of the kink and thBréaking up is similar, the kink has negative velocity in both

breather after breaking ugy anddg , adhere to the momen- czises. Itis now glgalr:_tha‘tl w;:hm tlrll_ﬁ? per:(ocrj] ofr;[he curlye
tum conservation lavdi M +d§M,=0, so it is enough to k (i), presented in Fig. 4, the collision of the three solitons

measure the velocity of only one particle, let us sgdy. We takes place at=iT.

. v N y P T ¥ The above result shows that the cudg(x,), presented
determined the velocitg, numerically at a time when the . _. . h ibil h . f .
kink and the breather are rather far from each other afte] Fig. 4, gives the possibility to trace the motion of quasi-
breaking up of the three-soliton solution particles. Letr be the time the quasiparticles take to reach

A 'tg P b f Fia. 1 th ) locitlF i each other due to their mutual attraction if, at the beginning
s It can be Ee_en rom |g.” . the velocidf IS VEIY " of the numerical run, the distance between them iand the
sensitive to the “fine structure” of the three-soliton colli-

) - ; o velocities are equal to zero. The increasexpffrom one
sion. The conditions of the three-soliton collision can be

o . *
changed by the variation of the distance between kink ananmlmum(or maximum of the curvedy (x,) to the next one

breather at the beginning of the numerical run, i.e., by variadlves th_e increase of b_y T. In Fig. 6 thex, d_epengle_nce of
tion of x, (remember that we put,=0). 7/T is given by open circles for 30 successive minimums of

. .
In Fig. 4, the velocityd? is presented as the functionxf the curved; (x,). The data were taken from Fig. 4 extended

for ®=0.3. The functiond; (x,) is an odd function and we up t0x,=2.23.
plot it only for x,=0. One can see the quasiperiodic charac-
ter of the function, which is due to the periodic motion of the
breather. Another important feature of the functet(x,) is Let us turn to the discussion of the alternative behavior of
the alternation of the regions of smooth and random behawhe functiondj (x,) shown in Fig. 4. Random behavior of the
ior. The third easily observable fact is thdf lies in the function takes place when it crosses the liffe=0. In these
range —0.07<dj <0.07. In the following subsections we regions, the kink and the breather after the collision move in
discuss these features of the functif(x,). opposite directions with rather small velocities, not enough
to overcome their mutual attraction, and quasiparticles col-
lide again. High sensitivity ofl; to thex, is responsible for
the chaotic behavior ofl} (x,) in the case when the first
First we discuss the periodicity of the functiatf (x,).  collision of kink and breather does not lead to the breaking
One must keep in mind that the kink and the breather in theip of the three-soliton solution.
discrete system are mutually attractive, so the distance be- In Fig. 7, we show the time evolution of the three-soliton
tween them decreases with time. In Fig. 5, we demonstratgolution for »=0.3 and () x,=0.231 [Fig. 7(@], X
the picture of the kink-breather collision for Fig(ah x, ~ =0.296[Fig. 7(b)]. These two magnitudes of are taken
=0.05 and Fig. B) x,=0.32. These two magnitudes ®f  from the regions of random behavior of the functidj(x,)
approximately correspond to the two sequential minimumgsee Fig. 4. In Sec. VB we established the rule that within
of the curved; (x,) (see Fig. 4 Actually, the distance be- theith period of the curvel; (x,) the collision of kink and
tween kink and breather at the beginning of the numericabreather takes place &tiT. Thus, the collision in Fig. (&)
run is equal tox,+ A, /2+ A /2, but for the sake of simplic- may have taken place a&T~21 ort=2T~42 and in Fig.

B. Alternative behavior of dj (x,)

A. Periodicity of di (x)
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100~
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FIG. 6. Time of kink-breather collision in units of breather LS | &SP
period T as a function of the initial distance between kink and 840 4 38 840 4 8
breather, presented by . Open circles show the, dependence of X X

7/T for 30 successive minimums of the cureg(x,) presented in
Fig. 4. Solid line is the result of assumption that the attraction
potential between kink and breather is given by E2{l) with «
=1.2x10"3, Ry=0.52.

FIG. 7. Picture of breaking up of the three-soliton solution into
a kink and a breather fdia) x,=0.231 and(b) x,=0.296.

D. Influence of w
7(b) att=2T~42. However, energy obtained by the kink in So far j[he case of the breather’s frequeney- 0'.3 has
égeen studied. Similar numerical results were obtaineddsfor

these collisions was not big enough to overcome the attrac= ; .
tion to the breather and hence, they collide again. The brealﬁ 0‘_2 and 0.4. Let us _d|scuss t_he influencesobn the be-
avior of the three-soliton solution.

g\_?:fotgkes place in Fig (@ at 6T~126 and in Fig. ) at There are two factors that define the behavior of the three-

soliton solution. The first stabilizing factor is the binding
C. Attraction force energy of kink and breather
We attempted to extract from the numerical data the at- j *
! . . . Eg= | F(r)dr=aR,. 22
traction force acting between a kink and a breather. For this B Jo (r) ao (22)
purpose we consider a kink and a breather as classical par-

ticles having massedl,, M, coordinatest,(t), &,(t), and The three-soliton solution breaks up due to the energy

interacting via force exchange between solitons. The energy obtained by kink in
the form of kinetic energy is equal to the reduction of the

F(r)=aexp—r/Ry), (21)  breather’s energgfor the case of weak discreteness one can

neglect the radiation lossesThus, the second, destructive

. . . factor is the maximum exchange enefgy, i.e., the maxi-
wherer is the distance between particles amdR, are pa- mum kinetic energy of the kink after breaking up

rameters. We solved numerically the equations of motion for

the particles with the initial conditiong)=x,, £2=0, & 1 -

—0, £2=0. We calculated the time of collision of the Eg=>My(maxdi|)*. (23
particles as a function of,. The goal of the calculation was

to fit, by proper choice of andR, the data shown in Fig. 6 If Ee<Eg then the three-soliton solution cannot break up
by open circles. The result far=1.2x10"3, R,=0.52, is  because the kink cannot obtain from the breather the amount
shown in Fig. 6 by a solid line. of energy sufficient to escape. For example, dor 0.3 one

As can be seen from Fig. 6, the exponential law for thehas Eg=6.2<10"*, and Ez=0.02, where we usetl,=8
force Eq.(21) is valid for a not very small distance between and maxdi |=0.07 (see Fig. 4. Similar data for different
kink and breatherx,>1.0). Forx,< 1.0, Fig. 6 suggests that magnitudes ofv are given in Table I.
the actual attraction force between kink and breather is Itis interesting to compare the binding energy of kink and
greater than that predicted by the approximation &4,). breatherEg with the maximum exchange energy for dif-
What actually happens is the acceleration of quasiparticleferentw. The comparison is given in Fig. 8. As may be seen,
due to the energy exchange, which takes place at sqpall,  the ratioEz/Eg decreases rapidly with increase dn(note
in other words, in the vicinity of separatrix. the logarithmic scale for the ordinatd=rom the extrapola-

TABLE |. Numerical data for differentv.

w a RO EB ma)4dE| EE EE/EB
0.2 2.8x107% 0.53 1.5¢107* 0.12 5.8<10°? 390
0.3 1.2x10°3 0.52 6.2<1074 0.07 2.0<10°? 32

0.4 3.7x1073 0.46 1.7 1073 0.04 6.4<10°°3 3.8
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107 ‘ ‘ . =0.2 andw=0.6 the kink and the breather can create a
2 . 3 stable three-soliton quasiparticle that never breaks up into a
i kink and a breather.

i VI. CONCLUSION

A new effect of discreteness on the three-soliton SG so-
‘ ‘ lution, namely, the attraction between a kink and a breather,
° ] was found numerically. This attraction binds the kink and the
T breather into a three-soliton oscillatory system.
0z 04 06 08 The three-soliton oscillatory system shows the effect of
@ instability. We attribute this effect to the energy exchange
FIG. 8. RatioEg/Eg as the function ofw. For a smallw, the ~ Detween solitons that can take place in the vicinity of the
exchange energf: is greater than the binding ener@. The  Separatrix three-soliton solution to the SG equafibl.
extrapolation(the dotted ling suggests that in the region of large Comparison of the binding enerdyg for a kink and a
o (0>0.5) the three-soliton oscillatory system cannot break up bebreather with the maximum exchange enefgy revealed
cause, in that regiorEg is larger thanEg . that Eg is larger thanEg for small . Meanwhile, it is ex-
pected from the extrapolation that, for large Eg cannot
exceedEg. Consequently, it appears that the three-soliton
oscillatory system with smalb can spontaneously break up
énto a kink and a breather moving in opposite directions. For
largew the three-soliton oscillatory system never breaks

tion, one would expect that for large the binding energy
Eg should be greater than the exchange ené&xgy which is
to say that the three-soliton solution cannot break up. Mor
precisely, breaking up takes place but the kinetic energy ob?
tained by quasipatrticles is not enough to overcome their muP:
tual attraction and they cannot separate from each other, they
should collide again and again.

We checked numerically the last conclusion. kor 0.6 One of the authorgS.V.D. wishes to thank the Japan
the breaking up of the three-soliton solution was not ob-Society for the Promotion of Science for their financial sup-
served up tot=10°T at differentx,. Most likely for h port.
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