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Kink-breather solution in the weakly discrete Frenkel-Kontorova model

S. V. Dmitriev,* T. Miyauchi, K. Abe, and T. Shigenari
Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan

~Received 9 November 1999!

The discrete Frenkel-Kontorova model, having the sine-Gordon equation as the continuous analog, was
investigated numerically at a small degree of discreteness. Interaction between a kink and a breather in a
discrete system was compared with the exact three-soliton solution to the continuous sine-Gordon equation.
Nontrivial effects of discreteness were found numerically. One is that a kink and a breather in the discrete
system are mutually attractive quasiparticles, so they can be regarded as a three-soliton oscillatory system. The
other is the energy exchange between a kink and a breather when their collision takes place in a vicinity of a
separatrix solution to the continuous sine-Gordon equation. We have estimated numerically the kink-breather
binding energyEB and the maximum possible exchange energyEE for different breather frequenciesv. The
results suggest that there is a threshold breather frequency for the ‘‘spontaneous’’ breaking up of the three-
soliton oscillatory system into a kink and a breather moving in opposite directions.

PACS number~s!: 41.20.Jb, 36.20.2r, 45.05.1x, 63.20.Ry
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I. INTRODUCTION

The sine-Gordon~SG! equation appears in many differe
fields of physics@1–3#. In each field the SG equation is us
ally considered with some distinctive perturbation ter
@4–7#. For example, in solid state physics, the discretenes
media at a microscopic level makes it important to study
discrete form of the SG equation, which is the Frenk
Kontorova model@8#.

The discreteness effect on the one- and two-soliton
solutions has been extensively studied, see the review
Braun and Kivshar@9#, references therein and also@10–14#.
For many-soliton solutions~more than two! a new effect of
perturbation has been found, namely, the energy excha
between solitons@4,15–18#. It has been demonstrated th
the separatrix solutions to the SG equation are respons
for this effect@16#.

In the vicinity of a separatrix solution, even a small pe
turbation can have a pronounced effect on the dynamic
the system@19,20#. This is also true for the particular case
the SG equation perturbed by the discreteness. In this pa
we show that the effect of discreteness can be notice
even for a weak discreteness (h,0.5, for the definition ofh
see below!, when all other manifestations of discreteness
very small.

In Sec. II, for the sake of convenience, we reproduce
results of Ref.@16# describing the kink-breather SG solutio
and a separatrix three-soliton solution. In Sec. III, we g
some details of the numerical investigation. In Sec. IV,
demonstrate numerically the possibility of energy excha
between a kink and a breather in the weakly discrete
system. In Sec. V, we discuss the numerical results of
kink-breather mutual attraction study.

II. FRENKEL-KONTOROVA MODEL AND SG EQUATION

We consider the Hamiltonian of the Frenkel-Kontoro
model @8# in a dimensionless form

*Permanent address: General Physics Department, Barnaul
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2h2
~un112un!21~12cosun!G ,

~1!

whereEn is the energy ofnth particle,un is the displacemen
of the particle from an initial point with coordinatex5nh,
pn is the momentum of the particle with a unit mass,H/h is
the density of energy, andh is the only parameter of the
system, which gives a measure of discreteness becaus
equations of motion obtained from the Hamiltonian Eq.~1!,

d2un

dt2
2

1

h2
~un2122un1un11!1sinun50, ~2!

in the continuum limit (h→0), are reduced to the SG equ
tion

utt2uxx1sinu50. ~3!

Many-soliton solutions to Eq.~3! can be derived by
means of the Hirota method@21# or by the Bäcklund trans-
formation ~see, e.g.,@2#!.

The three-soliton solution to Eq.~3!, which describes the
collision between a kink and a breather, has been reporte
Ref. @16# in the following form

u5v1w. ~4!

The functionv is the kink solution

v54 arctan expB, ~5!

whereB5dk(x2xk2dkt), 0<dk,1 is the velocity of the
kink, dk

215A12dk
2, andxk defines the position of the kink

at the timet50.
The second part of the solution Eq.~4! is

w54 arctan@~hX!/~vY!#, ~6!

with
ate
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PRE 61 5881KINK-BREATHER SOLUTION IN THE WEAKLY . . .
X52v~sinhD2cosC sinhB!

12dkdb~dk2db!sinC coshB, ~7!

Y52h~cosC1sinhD sinhB!

22dkdb~12dkdb!coshD coshB, ~8!

whereC52vdb@ t2db(x2xb)#12pm with an integerm,
D5hdb(x2xb2dbt), 0<db,1 is the velocity of the
breather,db

215A12db
2, 0<v,1 is the frequency of the

breather,h5A12v2, xb defines the position of the breath
at the timet50.

In the continuum limit the velocity of the breatherdb , its
wavelengthl, and periodT are related to each other by th
following expressions:

udbu5l/T, l52pdbudbu/v, T52pdb /v. ~9!

The amplitudeA and the energyEb of the breather are

A54 arctan~h/v!, Eb516hdb . ~10!

The energy of the kink isEk58dk and the energy of the
solution ~4! is E5Ek1Eb .

The masses of the kink and the breather are

Mk58dk5Ek , Mb516hdb5Eb . ~11!

The widths of the kink and the breather can be defined

Wk5dk
21 , Wb5~hdb!21. ~12!

For dk50, Wk51. The width of the kink gives the notion o
the discreteness parameterh, which should be viewed in
comparison withWk .

Collision between a kink and a breather results in
phase shifts that, in non-relativistic limit, can be expressed
follows:

Dk54 tanh21 h, Db5
2

h
tanh21 h. ~13!

The coordinate and the time of collision of the kink wi
the center of mass of the breather are

xc5
dkxb2dbxk

dk2db
, tc5

xb2xk

dk2db
. ~14!

If dk5db then, forxkÞxb , the kink never passes through th
center of mass of the breather and, forxk5xb , the kink
constantly locates at the center of mass of the breather.

Note that the center of kink in the solution Eq.~4! is not
located atxk ; and that the center of the breather is not atxb .
Far from the collision point, before and after the collisio
the center of the kink or breather moves in the (x,t) plane
along the lines

x2xc6
D

2
5d~ t2tc!, ~15!

whereD andd are the phase shift and the velocity of kink
breather, respectively.

If
s

e
s

,

v~xb2xk!52pmdb~dk2db!, ~16!

wherem is an integer, then att5tc all three kinks collide at
one pointx5xc .

Equation~4! subjected to the condition Eq.~16! and to the
condition

~dk2db!→0 ~17!

is a separatrix three-soliton solution to the SG equation.
Note, that the condition Eq.~17! generalizes the condition

dk→0 anddb→0 given in Ref.@16#. The generalization can
be easily done with the help of the Lorentz transformatio

III. MOLECULAR DYNAMICS SIMULATION

Equation ~4! predicts the purely elastic interaction b
tween quasiparticles with no energy exchange between t
or radiation. Here we study the influence of a weak discre
ness on the three-soliton solution.

Equations of motion of the Frenkel-Kontorova model, E
~2!, were integrated numerically. We rewrite Eq.~2! in the
form

ün5Rn , ~18!

where Rn5(un2122un1un11)/h22sinun and introduce
the time mesht j5 j Dt, j 50,1,2, . . . with the time stepDt.
By the Störmer method of order six@22# the unknown func-
tions un(t) at the (j 11)th time step can be found as

un, j 1152un, j2un, j 211Dt2S 7

6
Rn, j2

5

12
Rn, j 21

1
1

3
Rn, j 222

1

12
Rn, j 23D . ~19!

When calculating the kinetic energy of a particle we us
the following approximation for the velocity

u̇n, j5
2un, j13un, j 2126un, j 221un, j 23

6Dt
. ~20!

For the time step we putDt51023. The numerical data
reported in this paper did not vary essentially with furth
decreasing ofDt.

The solution Eq.~4! to the continuous equation Eq.~3!,
after the substitutionx→nh and t→ j Dt, was used for set-
ting the initial conditions for the discrete system Eq.~2!.

A kind of absorbing boundary conditions for the cha
containing 401 particles (2200<n<200) was used in orde
to exclude the influence of the radiation reflected from
boundaries. For the discreteness parameter we seth50.2
~weak discreteness!.

IV. ENERGY EXCHANGE BETWEEN KINK
AND BREATHER

Let us first study the influence of the weak discreten
(h50.2) on the kink-breather collision. For this study we p
the breather frequencyv50.3; the velocities of the kink and
the breatherdk50, db520.2; the kink position paramete
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xk50 and different magnitudes for the breather position
rameterxb.0.

According to the choice of parameters, before the co
sion kink is at rest, the breather moves toward the kink fr
the right to the left. The breather moves in an oscillato
manner and, as it has been demonstrated in Ref.@16#, the
inelasticity of the kink-breather collision strongly depends
the phase at which the breather meets the kink. Variatio
xb means the variation of the phase of collision. The veloc
of the kink after the collisiondk* is a suitable measure o
inelasticity of the kink-breather interaction. The velocitydk*
was determined when the kink was far from the breat
after the collision.

In Fig. 1, the inelasticity of collisiondk* is presented as
the function of the phase of collisionxb /l, wherel is given
by Eq. ~9!. Obviously, the functiondk* (xb /l) should have
the period equal to unity. As Fig. 1 suggests, the inelasti
of collision drastically increases in the vicinity ofxb /l5m.
One can easily check that the conditionxb /l5m coincides
with the condition of separatrix solution Eq.~16! at xk50
anddk50, considered in our numerical example. The seco
condition of the separatrix solution, Eq.~17!, is also nearly
fulfilled becausedk2db50.2, which is sufficiently small.

In Figs. 2~a!–2~d!, we show the kink-breather collisions a
different phases of collision, shown in Fig. 1 by the cor
sponding arrows. The particles of the chain having ene
En>0.5 @see Eq.~1!# are shown in Fig. 2 by black dots an
the particles with energyEn,0.5 are not shown. Thus, th
black areas show the cores of solitons having a high ene
In Figs. 2~a! and 2~d! collision takes place far from separa
trix and it is nearly elastic. In Figs. 2~b! and 2~c! all three
kinks collide practically at one point and with a small rel
tive velocity or, in other words, the conditions of the sep
ratrix solution, Eq.~16! and Eq.~17!, are nearly fulfilled.
Collision in the vicinity of separatrix is inelastic.

V. ATTRACTION BETWEEN KINK AND BREATHER

For this study we set the parameters as follows: Discr
ness parameterh50.2; breather frequencyv50.2, 0.3, and
0.4; velocities of the kink and the breatherdk5db50; the
breather position parameterxb50, and different magnitude
for the kink position parameterxk . The differencexk2xb
and the phase shiftsDk andDb define the distance betwee
the centers of the kink and the breather. We study the cas

FIG. 1. Velocity of the kink after the collisiondk* as the func-
tion of the phase of collisionxb /l. The inelasticity of collision,
presented bydk* , drastically increases in the vicinity ofxb /l5m.
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small distances, when the quasiparticles overlap. We car
out the numerical integration of Eq.~2! starting from the
time t5T/4, where the period of breatherT is given by Eq.
~9!.

In Fig. 3, we compare the time-evolution of the discre
system Fig. 3~a! with the prediction of the continuous SG
equation Fig. 3~b! for v50.3, xk51.2. According to Eq.
~15!, at the beginning of the numerical run the center of ki
locates atx5xk1Dk/251.213.7554.95 and the center o
breather locates atx5xb2Db/25021.96521.96.

As Fig. 3~b! suggests, the overlapping breather and k
in a continuous SG system interact in such a way that
part of a period of a breather oscillationT, there is an attrac-
tion between quasiparticles and for another part of the pe
there is a repulsion. The attraction and the repulsion exa
compensate each other and the mean distance between
siparticles does not vary in time. In the perturbed syst
@Fig. 3~a!#, the attraction is not exactly compensated by t

FIG. 2. Time evolution of the kink-breather collisions at diffe
ent phases of collision. Arrows in Fig. 1 show the phases of co
sion for ~a!–~d!, respectively. The particles of the chain havin
energy En>0.5 are shown by black dots and the particles w
energyEn,0.5 are not shown. Thus, the black areas show the co
of solitons.~a! and~d! Collisions take place far from the separatr
and they are nearly elastic.~b! and~c! All three kinks collide prac-
tically at one point and with a small relative velocity or, i.e., in th
vicinity of the separatrix.~b! and ~c! Collisions are inelastic.

FIG. 3. ~a! Time evolution of the discrete system and~b! the
continuous SG equation forv50.3, xk51.2. The black areas show
the cores of solitons.~a! In the discrete system, the distance b
tween quasiparticles gradually decreases due to their mutual at
tion. At t510T'210 (T is the period of the breather!, as a result of
energy exchange between quasiparticles, the three-soliton sol
breaks up into a kink and a breather moving in opposite directio



cl

u
ov

on
th

. I
n
th
-

fte

i-
be
an
ria

ac
he

a

e

th
b

ra

m
-
ica

Fig.
r is

of
th

ns

si-
ch
ing

of
ed

of
e

in
gh
ol-

t
ing

n

in

e-
to
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repulsion. As a result, the distance between quasiparti
gradually decreases and att510T'210, the kink collides
with the breather. The collision may result in the breaking
of the three-soliton solution into a breather and a kink m
ing in opposite directions, as it takes place in Fig. 3~a!.

The origin of the breaking up of the three-soliton soluti
is the energy exchange between kink and breather in
vicinity of a separatrix, as it was demonstrated in Sec. IV
the collision is inelastic, the kink can obtain some energy a
separate from the breather. The velocities of the kink and
breather after breaking up,dk* anddb* , adhere to the momen
tum conservation lawdk* Mk1db* Mb50, so it is enough to
measure the velocity of only one particle, let us saydk* . We
determined the velocitydk* numerically at a time when the
kink and the breather are rather far from each other a
breaking up of the three-soliton solution.

As it can be seen from Fig. 1, the velocitydk* is very
sensitive to the ‘‘fine structure’’ of the three-soliton coll
sion. The conditions of the three-soliton collision can
changed by the variation of the distance between kink
breather at the beginning of the numerical run, i.e., by va
tion of xk ~remember that we putxb50).

In Fig. 4, the velocitydk* is presented as the function ofxk

for v50.3. The functiondk* (xk) is an odd function and we
plot it only for xk>0. One can see the quasiperiodic char
ter of the function, which is due to the periodic motion of t
breather. Another important feature of the functiondk* (xk) is
the alternation of the regions of smooth and random beh
ior. The third easily observable fact is thatdk* lies in the
range 20.07,dk* ,0.07. In the following subsections w
discuss these features of the functiondk* (xk).

A. Periodicity of dk* „xk…

First we discuss the periodicity of the functiondk* (xk).
One must keep in mind that the kink and the breather in
discrete system are mutually attractive, so the distance
tween them decreases with time. In Fig. 5, we demonst
the picture of the kink-breather collision for Fig. 5~a! xk
50.05 and Fig. 5~b! xk50.32. These two magnitudes ofxk
approximately correspond to the two sequential minimu
of the curvedk* (xk) ~see Fig. 4!. Actually, the distance be
tween kink and breather at the beginning of the numer
run is equal toxk1Dk/21Db/2, but for the sake of simplic-

FIG. 4. Velocity of the kink after breaking up of the thre
soliton solutiondk* as the function ofxk for v50.3.
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ity, we will drop the constant partDk/21Db/2 and usexk as
the measure of the distance between quasiparticles. In
5~a!, the initial distance between the kink and the breathe
rather small and the collision takes place att5T'21, while
in Fig. 5~b!, the distance is larger and, att5T, particles are
still rather far from each other and they collide att52T
'42. The fine structure of collisions shown in Figs. 5~a! and
5~b! is almost the same and, consequently, the result
breaking up is similar, the kink has negative velocity in bo
cases. It is now clear that within thei th period of the curve
dk* (xk), presented in Fig. 4, the collision of the three solito
takes place att5 iT.

The above result shows that the curvedk* (xk), presented
in Fig. 4, gives the possibility to trace the motion of qua
particles. Lett be the time the quasiparticles take to rea
each other due to their mutual attraction if, at the beginn
of the numerical run, the distance between them isxk and the
velocities are equal to zero. The increase ofxk from one
minimum ~or maximum! of the curvedk* (xk) to the next one
gives the increase oft by T. In Fig. 6 thexk dependence of
t/T is given by open circles for 30 successive minimums
the curvedk* (xk). The data were taken from Fig. 4 extend
up to xk52.23.

B. Alternative behavior of dk* „xk…

Let us turn to the discussion of the alternative behavior
the functiondk* (xk) shown in Fig. 4. Random behavior of th
function takes place when it crosses the linedk* 50. In these
regions, the kink and the breather after the collision move
opposite directions with rather small velocities, not enou
to overcome their mutual attraction, and quasiparticles c
lide again. High sensitivity ofdk* to thexk is responsible for
the chaotic behavior ofdk* (xk) in the case when the firs
collision of kink and breather does not lead to the break
up of the three-soliton solution.

In Fig. 7, we show the time evolution of the three-solito
solution for v50.3 and ~a! xk50.231 @Fig. 7~a!#, xk
50.296 @Fig. 7~b!#. These two magnitudes ofxk are taken
from the regions of random behavior of the functiondk* (xk)
~see Fig. 4!. In Sec. V B we established the rule that with
the i th period of the curvedk* (xk) the collision of kink and
breather takes place att5 iT. Thus, the collision in Fig. 7~a!
may have taken place att5T'21 or t52T'42 and in Fig.

FIG. 5. Picture of breaking up of the three-soliton solution in
a kink and a breather for~a! xk50.05 and~b! xk50.32.
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7~b! at t52T'42. However, energy obtained by the kink
these collisions was not big enough to overcome the att
tion to the breather and hence, they collide again. The bre
ing up takes place in Fig. 7~a! at 6T'126 and in Fig. 7~b! at
5T'105.

C. Attraction force

We attempted to extract from the numerical data the
traction force acting between a kink and a breather. For
purpose we consider a kink and a breather as classical
ticles having massesMk , Mb , coordinatesjk(t), jb(t), and
interacting via force

F~r !5a exp~2r /R0!, ~21!

wherer is the distance between particles anda, R0 are pa-
rameters. We solved numerically the equations of motion
the particles with the initial conditionsjk

05xk , jb
050, j̇k

0

50, j̇b
050. We calculated the timet of collision of the

particles as a function ofxk . The goal of the calculation wa
to fit, by proper choice ofa andR0, the data shown in Fig. 6
by open circles. The result fora51.231023, R050.52, is
shown in Fig. 6 by a solid line.

As can be seen from Fig. 6, the exponential law for
force Eq.~21! is valid for a not very small distance betwee
kink and breather (xk.1.0). Forxk,1.0, Fig. 6 suggests tha
the actual attraction force between kink and breather
greater than that predicted by the approximation Eq.~21!.
What actually happens is the acceleration of quasiparti
due to the energy exchange, which takes place at smallxk or,
in other words, in the vicinity of separatrix.

FIG. 6. Time of kink-breather collisiont in units of breather
period T as a function of the initial distance between kink a
breather, presented byxk . Open circles show thexk dependence of
t/T for 30 successive minimums of the curvedk* (xk) presented in
Fig. 4. Solid line is the result of assumption that the attract
potential between kink and breather is given by Eq.~21! with a
51.231023, R050.52.
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t-
is
ar-

r

e
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D. Influence of v

So far the case of the breather’s frequencyv50.3 has
been studied. Similar numerical results were obtained fov
50.2 and 0.4. Let us discuss the influence ofv on the be-
havior of the three-soliton solution.

There are two factors that define the behavior of the thr
soliton solution. The first stabilizing factor is the bindin
energy of kink and breather

EB5E
0

`

F~r !dr5aR0 . ~22!

The three-soliton solution breaks up due to the ene
exchange between solitons. The energy obtained by kin
the form of kinetic energy is equal to the reduction of t
breather’s energy~for the case of weak discreteness one c
neglect the radiation losses!. Thus, the second, destructiv
factor is the maximum exchange energyEE , i.e., the maxi-
mum kinetic energy of the kink after breaking up

EE5
1

2
Mk~maxudk* u!2. ~23!

If EE,EB then the three-soliton solution cannot break
because the kink cannot obtain from the breather the am
of energy sufficient to escape. For example, forv50.3 one
hasEB56.231024, and EE50.02, where we usedMk58
and maxudk* u50.07 ~see Fig. 4!. Similar data for different
magnitudes ofv are given in Table I.

It is interesting to compare the binding energy of kink a
breatherEB with the maximum exchange energyEE for dif-
ferentv. The comparison is given in Fig. 8. As may be see
the ratioEE /EB decreases rapidly with increase inv ~note
the logarithmic scale for the ordinate!. From the extrapola-

n
FIG. 7. Picture of breaking up of the three-soliton solution in

a kink and a breather for~a! xk50.231 and~b! xk50.296.
TABLE I. Numerical data for differentv.

v a R0 EB maxudk* u EE EE /EB

0.2 2.831024 0.53 1.531024 0.12 5.831022 390
0.3 1.231023 0.52 6.231024 0.07 2.031022 32
0.4 3.731023 0.46 1.731023 0.04 6.431023 3.8
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tion, one would expect that for largev the binding energy
EB should be greater than the exchange energyEE , which is
to say that the three-soliton solution cannot break up. M
precisely, breaking up takes place but the kinetic energy
tained by quasiparticles is not enough to overcome their
tual attraction and they cannot separate from each other,
should collide again and again.

We checked numerically the last conclusion. Forv50.6
the breaking up of the three-soliton solution was not o
served up tot5103T at different xk . Most likely for h

FIG. 8. RatioEE /EB as the function ofv. For a smallv, the
exchange energyEE is greater than the binding energyEB . The
extrapolation~the dotted line! suggests that in the region of larg
v (v.0.5) the three-soliton oscillatory system cannot break up
cause, in that region,EB is larger thanEE .
s,

ki,

ri-
e
b-
u-
ey

-

50.2 andv>0.6 the kink and the breather can create
stable three-soliton quasiparticle that never breaks up in
kink and a breather.

VI. CONCLUSION

A new effect of discreteness on the three-soliton SG
lution, namely, the attraction between a kink and a breath
was found numerically. This attraction binds the kink and t
breather into a three-soliton oscillatory system.

The three-soliton oscillatory system shows the effect
instability. We attribute this effect to the energy exchan
between solitons that can take place in the vicinity of t
separatrix three-soliton solution to the SG equation@16#.

Comparison of the binding energyEB for a kink and a
breather with the maximum exchange energyEE revealed
that EE is larger thanEB for small v. Meanwhile, it is ex-
pected from the extrapolation that, for largev, EE cannot
exceedEB . Consequently, it appears that the three-soli
oscillatory system with smallv can spontaneously break u
into a kink and a breather moving in opposite directions. F
a largev the three-soliton oscillatory system never brea
up.

ACKNOWLEDGMENTS

One of the authors~S.V.D.! wishes to thank the Japa
Society for the Promotion of Science for their financial su
port.

-

.

s.

.

,

k,

.

@1# M. Remoissenet,Waves Called Solitons~Springer, Berlin-
Heidelberg, 1994!.

@2# R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morrie
Solitons and Nonlinear Wave Equations~Academic Press,
London, 1982!.

@3# A. S. Davydov,Solitons in Molecular Systems~Reidel, Dor-
drecht, 1985!.

@4# Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys.61, 763
~1989!.

@5# N. R. Quintero and A. Sa´nchez, Eur. Phys. J. B6, 133~1998!.
@6# Yu. S. Kivshar, F. Zhang, and L. Va´zquez, Phys. Rev. Lett.67,

1177 ~1991!.
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